

EEPROM Memory Programming Specification

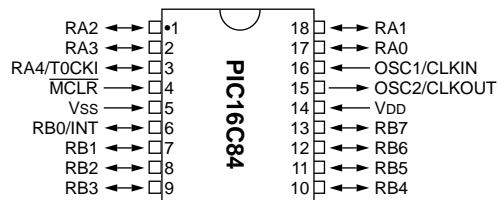
This document includes the programming specifications for the following devices:

- PIC16C84

1.0 PROGRAMMING THE PIC16C84

The PIC16C84 is programmed using the serial method. The serial mode will allow the PIC16C84 to be programmed while in the users system. This allows for increased design flexibility.

1.1 Hardware Requirements


The PIC16C84 requires one programmable power supply for VDD (4.5V to 5.5V) and a VPP of 12V to 14V. Both supplies should have a minimum resolution of 0.25V.

1.2 Programming Mode

The programming mode for the PIC16C84 allows programming of user program memory, data memory, special locations used for ID, and the configuration word.

PIN CONFIGURATION

PDIP, SOIC

PIN DESCRIPTIONS (DURING PROGRAMMING): PIC16C84

Pin Name	During Programming		
	Pin Name	Pin Type	Pin Description
RB6	CLOCK	I	Clock input
RB7	DATA	I/O	Data input/output
MCLR	VTEST MODE	P*	Program Mode Select
VDD	VDD	P	Power Supply
Vss	Vss	P	Ground

Legend: I = input, O = Output, P = Power

*In PIC16C84, programming high voltage is internally generated. To activate the programming mode, high voltage needs to be applied to MCLR input. This means that MCLR does not draw any significant current.

2.0 PROGRAM MODE ENTRY

2.1 User Program Memory Map

The user memory space extends from 0x0000 to 0x1FFF (8K), of which 1K (0x0000 - 0x03FF) is physically implemented. In actual implementation the on-chip user program memory is accessed by the lower 10-bits of the PC, with the upper 3-bits of the PC ignored. Therefore if the PC is greater than 0x3FF, it will wrap around and address a location within the physically implemented memory. (See Figure 2-1).

In programming mode the program memory space extends from 0x0000 to 0x3FFF, with the first half (0x0000-0x1FFF) being user program memory and the second half (0x2000-0x3FFF) being configuration memory. The PC will increment from 0x0000 to 0x1FFF to 0x2000 to 0x3FFF and wrap around to 0x2000 (not to 0x0000). Once in configuration memory, the highest bit of the PC stays a '1', thus always pointing to the configuration memory. The only way to point to user program memory is to reset the part and reenter program/verify mode as described in Section 2.3.

In the configuration memory space, 0x2000-0x200F are physically implemented. Locations beyond 0x200F will physically access user memory. (See Figure 2-1).

2.2 ID Locations

A user may store identification information (ID) in four ID locations. The ID locations are mapped in [0x2000 : 0x2003]. It is recommended that the user use only the four least significant bits of each ID location. In some devices, the ID locations read-out in a scrambled fashion after code protection is enabled. For these devices, it is recommended that ID location is written as "11 1111 1000 bbbb" where 'bbbb' is ID information.

In other devices, the ID locations read out normally, even after code protection. To understand how the devices behave, refer to Table 3-1.

To understand the scrambling mechanism after code protection, refer to Section 3.1.

Programming Specification

FIGURE 2-1: PROGRAM MEMORY MAPPING

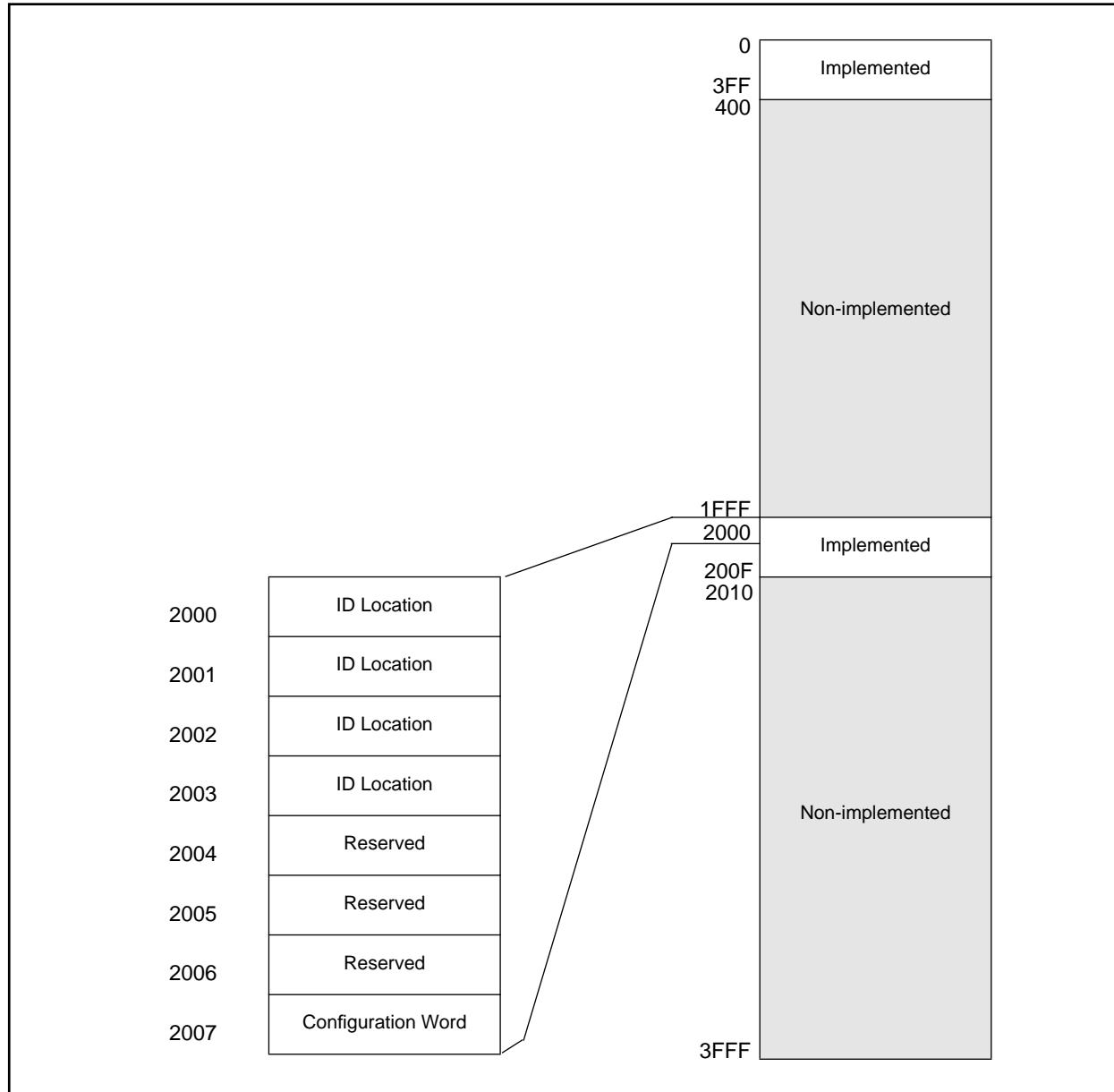
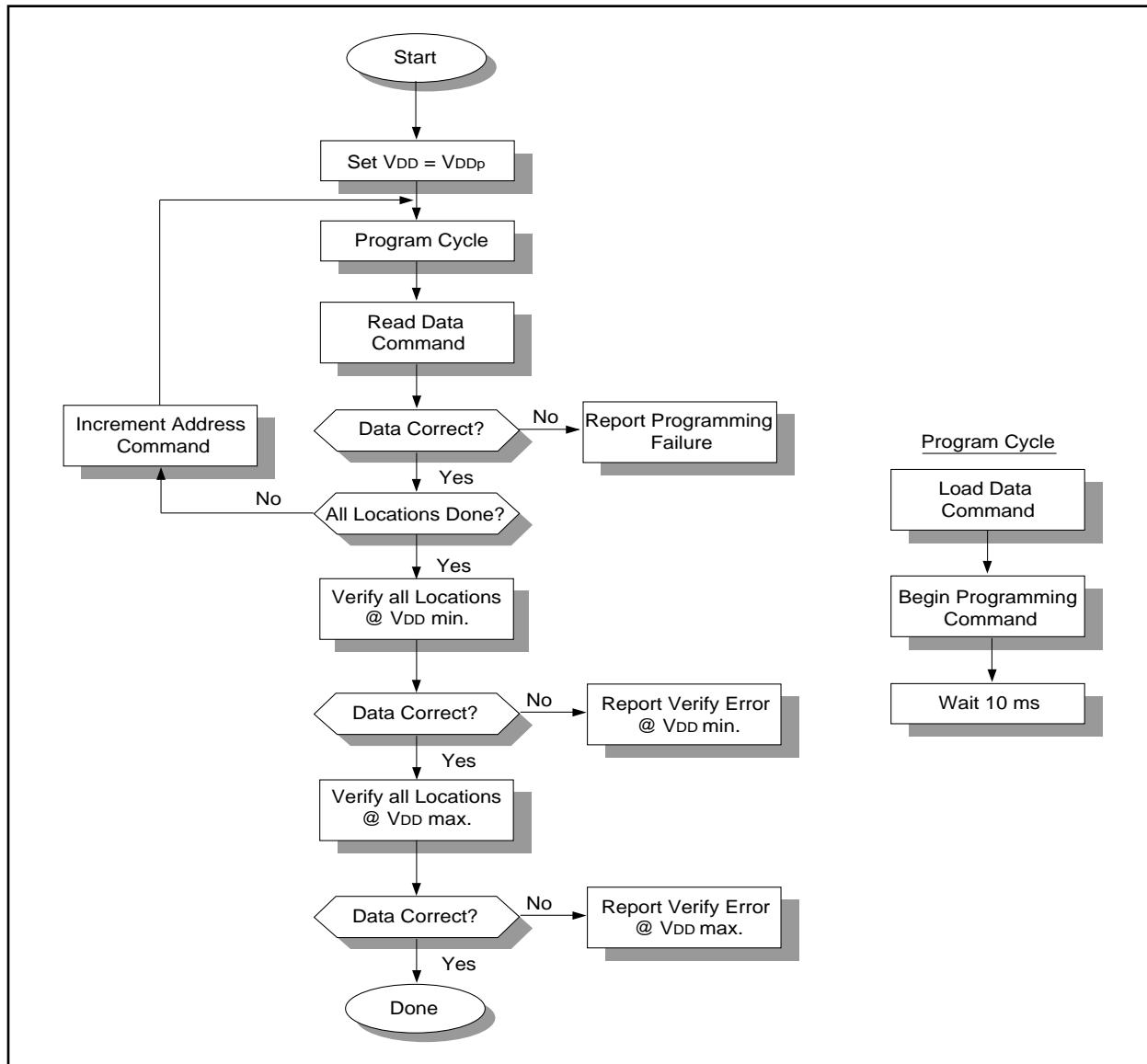


TABLE 2-1: COMMAND MAPPING (SERIAL OPERATION)

Command	Mapping (msb ... lsb)						Data
Load Configuration	0	0	0	0	0	0	0, data (14), 0
Load Data for Program Memory	0	0	0	0	1	0	0, data (14), 0
Read Data from Program Memory	0	0	0	1	0	0	0, data (14), 0
Increment Address	0	0	0	1	1	0	
Begin Programming	0	0	1	0	0	0	
Load Data for Data Memory	0	0	0	0	1	1	0, data (14), 0
Read Data from Data Memory	0	0	0	1	0	1	0, data (14), 0
Bulk Erase Program Memory	0	0	1	0	0	1	
Bulk Erase Data Memory	0	0	1	0	1	1	

2.3 Program/Verify Mode


The program/verify mode is entered by holding pins RB6 and RB7 low while raising MCLR pin from VIL to VIHH (high voltage). Once in this mode the user program memory and the configuration memory can be accessed and programmed in serial fashion. The mode of operation is serial, and the memory that is accessed is the user program memory. RB6 and RB7 are Schmitt Trigger Inputs in this mode.

The sequence that enters the device into the programming/verify mode places all other logic into the reset state (the MCLR pin was initially at VIL). This means that all I/O are in the reset state (High impedance inputs).

2.3.1 SERIAL PROGRAM/VERIFY OPERATION

The RB6 pin is used as a clock input pin, and the RB7 pin is used for entering command bits and data input/output during serial operation. To input a command, the clock pin (RB6) is cycled six times. Each command bit is latched on the falling edge of the clock with the least significant bit (lsb) of the command being input first. The data on pin RB7 is required to have a minimum setup and hold time (see AC/DC specifications) with respect to the falling edge of the clock. Commands that have data associated with them (read and load) are specified to have a minimum delay of μ s between the command and the data. After this delay, the clock pin is cycled 16 times with the first cycle being a start bit and the last cycle being a stop bit. Data is also input and output lsb first.

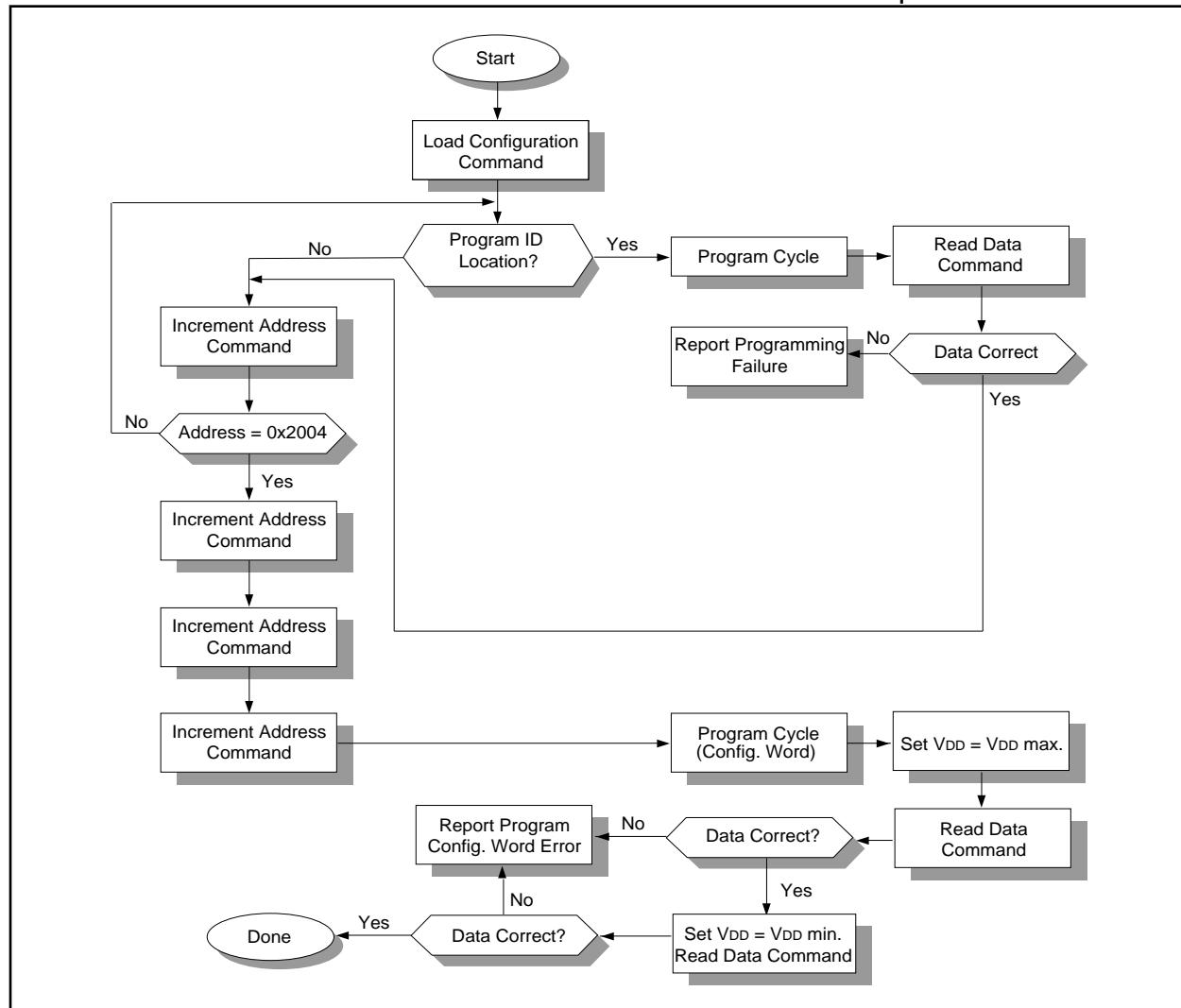
FIGURE 2-2: PROGRAM FLOW CHART - PIC16C84 PROGRAM MEMORY

Programming Specification

Therefore, during a read operation the lsb will be transmitted onto pin RB7 on the rising edge of the second cycle, and during a load operation the lsb will be latched on the falling edge of the second cycle. A minimum $1\mu\text{s}$ delay is also specified between consecutive commands.

All commands are transmitted lsb first. Data words are also transmitted lsb first. The data is transmitted on the rising edge and latched on the falling edge of the clock. To allow for decoding of commands and reversal of data pin configuration, a time separation of at least μs is required between a command and a data word (or another command).

The commands that are available are:


2.3.1.1 LOAD CONFIGURATION

After receiving this command, the program counter (PC) will be set to 0x2000. By then applying 16 cycles to the clock pin, the chip will load 14-bits in a "data word", as described above, to be programmed into the configuration memory. A description of the memory mapping schemes of the program memory for normal operation and configuration mode operation is shown in Figure 2-1. After the configuration memory is entered, the only way to get back to the user program memory is to exit the program/verify test mode by taking $\overline{\text{MCLR}}$ low (VIL).

2.3.1.2 LOAD DATA FOR PROGRAM ME|at

After receiving this command, the chip will load in a 14-bit "data word" when 16 cycles are applied, as described previously. A timing diagram for the load data command is shown in Figure 2-4.

FIGURE 2-3: PROGRAM FLOW CHART - PIC16C84 CONFIGURATION ME|at

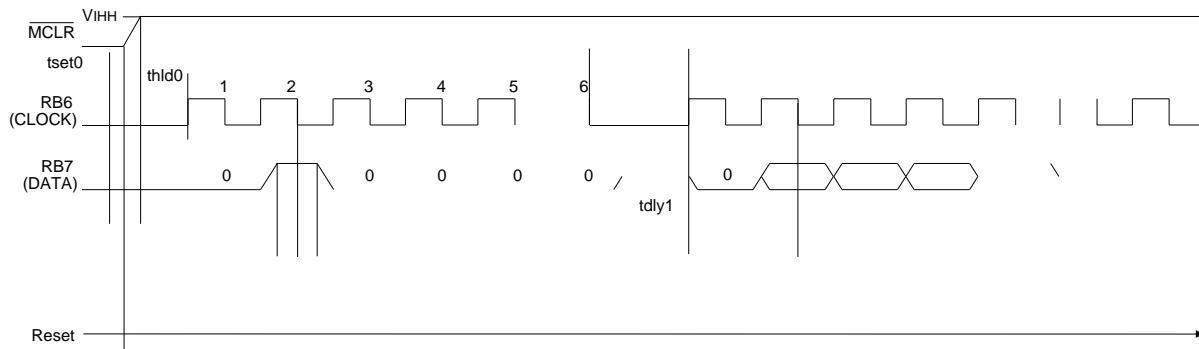
2.3.1.3 LOAD DATA FOR DATA MEMORY

After receiving this command, the chip will load in a 14-bit "data word" when 16 cycles are applied. However, the data memory is only 8-bits wide, and thus only the first 8-bits of data after the start bit will be programmed into the data memory. It is still necessary to cycle the clock the full 16 cycles in order to allow the internal circuitry to reset properly. The data memory contains 64 words. Only the lower 8-bits of the PC are decoded by the data memory, and therefore if the PC is greater than 0x3F, it will wrap around and address a location within the physically implemented memory.

2.3.1.4 READ DATA FROM PROGRAM MEMORY

After receiving this command, the chip will transmit data bits out of the program memory (user or configuration) currently accessed starting with the second rising edge of the clock input. The RB7 pin will go into output mode on the second rising clock edge, and it will

revert back to input mode (hi-impedance) after the 16th rising edge. A timing diagram of this command is shown in Figure 2-5.


2.3.1.5 READ DATA FROM DATA MEMORY

After receiving this command, the chip will transmit data bits out of the data memory starting with the second rising edge of the clock input. The RB7 pin will go into output mode on the second rising edge, and it will revert back to input mode (hi-impedance) after the 16th rising edge. As previously stated, the data memory is 8-bits wide, and therefore, only the first 8-bits that are output are actual data.

2.3.1.6 INCREMENT ADDRESS

The PC is incremented when this command is received. A timing diagram of this command is shown in Figure 2-6.

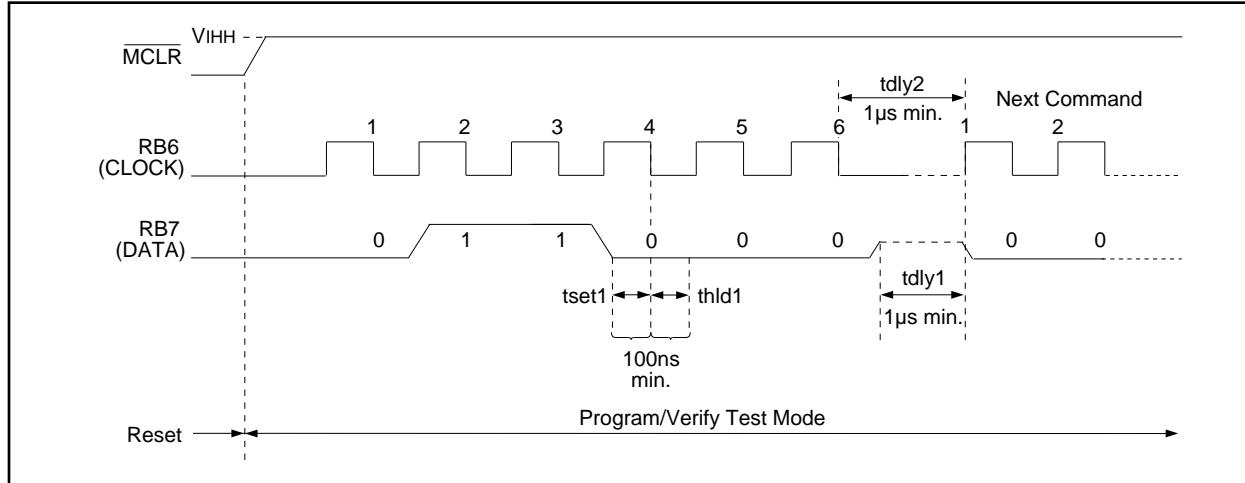

FIGURE 2-4: LOAD DATA FOR PROGRAM MEMORY COMMAND (SERIAL PROGRAM/VERIFY)

FIGURE 2-5: READ DATA FROM PROGRAM MEMORY COMMAND (SERIAL PROGRAM/VERIFY)

Programming Specification

FIGURE 2-6: INCREMENT ADDRESS COMMAND (SERIAL PROGRAM/VERIFY)

2.3.1.7 BEGIN PROGRAMMING

A load command must be given before every begin programming command. Programming of the appropriate memory (test program memory, user program memory or data memory) will begin after this command is received and decoded. An internal timing mechanism executes an erase before write. The user must allow 10ms for programming to complete. No "end programming" command is required.

2.3.1.8 BULK ERASE PROGRAM MEMORY

After this command is performed, the next program command will erase the entire program memory. The erase time is specified to be 10ms.

If the address is pointing to user memory, only the user memory will be erased.

If the address is pointing to the test program memory (0x2000 - 0x200F), then both the user memory and the test memory will be erased. The configuration word will not be erased, even if the address is pointing to location 0x2007.

2.3.1.9 BULK ERASE DATA MEMORY

After this command is performed, the next program command will erase the entire data memory. The erase time is specified to be 10ms.

2.4 Programming Algorithm Requirements Variable VDD

The PIC16C84 uses an intelligent algorithm. The algorithm calls for program verification at VDD (min.) as well as VDD (max.). Verification at VDD (min.) guarantees good "erase margin". Verification at VDD (max) guarantees good "program margin".

The actual programming must be done with VDD in the VDDP range (4.5 - 5.5V).

VDDP = Vcc range required during programming.

VDD min. = minimum operating VDD spec for the part.

VDD max.= maximum operating VDD spec for the part.

Programmers must verify the PIC16C84 at its specified VDD max. and VDD min. levels. Since Microchip may introduce future versions of the PIC16C84 with a broader VDD range, it is best that these levels are user selectable (defaults are ok).

Note: Any programmer not meeting these requirements may only be classified as "prototype" or "development" programmer but not a "production" quality programmer.

3.0 CONFIGURATION WORD

The PIC16C84 has five configuration bits. These bits can be set (reads '0') or left unchanged (reads '1') to select various device configurations.

FIGURE 3-1: CONFIGURATION WORD

Bit Number:	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	—	—	—	—	—	—	—	—	—	CP	PWRTE	WDTE	FOSC1	FOSC0

bit 4: **CP**, Code Protection Configuration Bit
1 = code protection off
0 = code protection on

bit 3: **PWRTE**, Power Up Timer Enable Configuration Bit
1 = Power up timer enabled
0 = Power up timer disabled

bit 3-2: **WDTE**, WDT Enable Configuration Bits
1 = WDT enabled
0 = WDT disabled

bit 1-0 **FOSC<1:0>**, Oscillator Selection Configuration Bits
11: RC oscillator
10: HS oscillator
01: XT oscillator
00: LP oscillator

3.1 Code Protection

For PIC16C84 devices, once code protection is enabled, all program memory locations read out in a scrambled fashion. The ID locations and the configuration word also read out in a scrambled fashion. Further programming is disabled for the entire program memory as well as data memory. It is possible to program the ID locations and the configuration word.

3.1.1 DISABLING CODE-PROTECTION

It is recommended that the following procedure be performed before any other programming is attempted. It is also possible to turn code protection off (code protect bit = 1) using this procedure; however, *all data within the program memory and the data memory will be erased when this procedure is executed, and thus, the security of the data or code is not compromised.*

Procedure to disable code protect:

- a) Execute load configuration (with a '1' in bit 4, code protect).
- b) Increment to configuration word location (0x2007)
- c) Execute command (000001)
- d) Execute command (000111)
- e) Execute 'Begin Programming' (001000)
- f) Wait 10ms
- g) Execute command (000001)
- h) Execute command (000111)

Programming Specification

3.2 Embedding Configuration Word and ID Information in the Hex File

To allow portability of code, the programmer is required to read the configuration word and ID locations from the hex file when loading the hex file. If configuration word information was not present in the hex file then a simple warning message may be issued. Similarly, while saving a hex file, all configuration word and ID information must be included. An option to not include this information may be provided.

Specifically for the PIC16C84, the EEPROM data memory should also be embedded in the hex file (see Section 4.0). Microchip Technology Inc. feels strongly that this feature is important for the benefit of the end customer.

TABLE 3-1: CHECKSUM COMPUTATION

TABLE 3-2:

Device	Code Protect	Checksum*	Blank Value	0x25E6 at 0 and max address
PIC16C84	OFF ON	SUM[0x000:0x3FF] + CFGW & 0x3FF SUM_XNOR7[0x000:0x3FF] + CFGW & 0x007F	0x3BFF 0xFC6F	0x07CD 0xFC15

Legend: CFGW = Configuration Word

SUM[a:b] = [Sum of locations a to b inclusive]

SUM_XNOR7[a:b] = XNOR of the seven high order bits of memory location with the seven low order bits summed over locations a through b inclusive. For example, location_a = 0x123 and location_b = 0x456, then SUM_XNOR7 [location_a : location_b] = 0x001F.

*Checksum = [Sum of all the individual expressions] MODULO [0xFFFF]

TABLE 3-3: CONFIGURATION WORD

PIC16C84

To code protect: XXXXXXXX0XXX

Program Memory Segment	R/W in Protected Mode	R/W in Unprotected Mode
Configuration Word (0x2007)	Read Scrambled, Write Enabled	Read Unscrambled, Write Enabled
All memory.	Read Scrambled, Write Disabled	Read Unscrambled, Write Enabled
ID Locations [0x2000 : 0x2003]	Read Scrambled, Write Enabled	Read Unscrambled, Write Enabled

Legend: X = Don't care

4.0 EMBEDDING DATA EEPROM CONTENTS IN HEX FILE

The programmer should be able to read data EEPROM information from a hex file and conversely (as an option) write data EEPROM contents to a hex file along with program memory information and fuse information.

The 64 data memory locations are logically mapped starting at address 0x2100. The format for data memory storage is one data byte per address location, lsb aligned.

TABLE 4-1: AC/DC TIMING REQUIREMENTS FOR PROGRAM/VERIFY TEST MODE

AC/DC Characteristics, Power Supply Pins	Standard Operating Conditions					
	Operating Temperature	+10°C ≤ TA ≤ +70°C, unless otherwise stated				
Characteristic	Sym.	Min.	Typ.	Max.	Units	Conditions/Comments
Supply voltage during programming	VDDP	4.5	5.0	5.5	V	
Supply voltage during verify	VDDV	VDD min.		VDD max.	V	Note 1
High voltage on $\overline{\text{MCLR}}$ for test mode entry	VIHH	12		14.0	V	Note 2
Supply current (from VDD) during program/verify	IDD _P			50	mA	
Supply current from VIHH (on $\overline{\text{MCLR}}$)	I _H H			200	μA	
$\overline{\text{MCLR}}$ rise time (V _{ss} to V _{HH}) for test mode entry	t _{VHHR}			1.0	μs	
(RB6, RB7) input high level	VIH1	0.8 VDD			V	Schmitt trigger input
(RB6, RB7) input low level $\overline{\text{MCLR}}$ (test mode selection)	VIL1	0.2 VDD			V	Schmitt trigger input
RB6, RB7 setup time (before pattern setup time)	t _{set0}	100			ns	
Data in setup time before clock ↓	t _{set1}	100			ns	
Data in hold time after clock ↓	t _{hld1}	100			ns	
Data input not driven to next clock input (delay required between command/data or command/command)	t _{dlly1}	1.0			μs	
Delay between clock ↓ to clock ↑ of next command or data	t _{dlly2}	1.0			μs	
Clock to data out valid (during read data)	t _{dlly3}	80			ns	

Note 1: Program must be verified at the minimum and maximum V_{DD} limits for the part.

Note 2: VIHH must be higher than V_{DD} + 4.5V to stay in programming/verify mode.

Programming Specification

NOTES:

Worldwide Sales and Service

AMERICAS

Corporate Office

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200 Fax: 602 786-7277
Technical Support: 602 786-7627

Atlanta

Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770 640-0034 Fax: 770 640-0307

Boston

Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508 480-9990 Fax: 508 480-8575

Chicago

Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071 Fax: 708 285-0075

Dallas

Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 214 991-7177 Fax: 214 991-8588

Dayton

Microchip Technology Inc.
35 Rockridge Road
Englewood, OH 45322
Tel: 513 832-2543 Fax: 513 832-2841

Los Angeles

Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338

New York

Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335

AMERICAS (continued)

San Jose

Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC

Hong Kong

Microchip Technology
Unit No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200 Fax: 852 2 401 3431

Korea

Microchip Technology
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200 Fax: 82 2 558 5934

Singapore

Microchip Technology
200 Middle Road
#10-03 Prime Centre
Singapore 0718
Tel: 65 334 8870 Fax: 65 334 8850

Taiwan

Microchip Technology
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175 Fax: 886 2 545 0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire
SL8 5AJ
Tel: 44 0 1628 851077 Fax: 44 0 1628 850259

France

Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20 Fax: 33 1 69 30 90 79

Germany

Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0 Fax: 49 89 627 144 44

Italy

Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso Ingresso No. 2
Via Paracelso 23, 20041
Agrate Brianza (MI) Italy
Tel: 39 039 689 9939 Fax: 39 039 689 9883

JAPAN

Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166 Fax: 81 45 471 6122

Also Available are:

**Microchip Electronic Bulletin Board
Service (BBS)**
MCHIPBBS on CompuServe®
Internet Address
<http://www.mchip.com/biz/mchip>

8/18/95

MICROCHIP

Printed in USA © 1995, Microchip Technology Incorporated. All Rights Reserved.

5/95

"Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights." The Microchip logo and name are registered trademarks of Microchip Technology Inc. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.